Learn Electric Cars

EV Battery

Types of EV Battery Cooling Systems Liquid or Air

Which is Better EV Battery Cooling System – Liquid or Air?

For achieving high thermal efficiency, EV batteries are needed to be kept within the optimal operating temperatures which is why the cooling systems for electric car batteries are critical. Liquid or air cooling system is the most widely used technique to keep an EV battery within the optimal thermal range. Lithium-ion batteries are influenced by temperatures a lot. In fact, that is a major drawback of these types of batteries. But these are energy dense, lightweight, relatively affordable and capable of fast charging, which is why these are mostly used in EVs today. However, an efficient thermal management system needs to be in place to keep the cells from getting too hot or cold to ensure a stable and maximum range and performance. You might also like: Top 5 Tips To Save / Earn Money From EV Charging You might also like: Mercedes Electric G-Wagon (EQG) to Get Silicon Battery Material Liquid vs Air EV Battery Cooling System Liquid EV Battery Cooling System There are two types of liquid battery cooling methods – Direct and Indirect. In a direct liquid cooling mechanism, the battery cells are in direct contact with the coolant. For this to work, the coolant needs to have low to no conductivity. However, there is still intensive R&D going on about this which is why we don’t see it in EVs at the moment. Indirect cooling is something that we have got accustomed to even in traditional internal combustion engines. It consists of thin metal pipes that are placed right next to the battery surface. The heat generated during discharging (when the car in is motion) is absorbed by the coolant (generally glycol or polyglycol) running in these metal pipes via conduction. As a result, the excess heat is taken away by the coolant and it recirculates over and over again. This is the most common method used to control the temperatures of EV batteries today. You might also like: 5 New EV Battery Technologies – Aluminium-ion to Niobium Air EV Battery Cooling System As the name suggests, air cooling systems use the principle of convection instead of conduction for heat transfer. The air circulates around the hot battery and absorbs the heat emitted by it. Needless to mention, this is quite an inefficient way to manage thermal balance. There were some earlier budget EVs that used to have this mechanism, but eventually, carmakers moved to liquid cooling systems. Other Types of Battery Cooling Systems There is also the fin cooling system that is used in many electrical appliances. You must’ve seen fans and cooling setups with thin fins. The principle used in this setup is also convection. These fins have high thermal conductivity which ensures that they absorb the heat. But installing fins inside the vehicles requires additional space and weight. Those are undesirable aspects in modern cars where packing efficiency is critical to liberating the maximum space for the passengers. Finally, there are also Phase Change Materials (PCM) which absorb heat and change from solid to liquid. As one would imagine, the reason why they are not used in vehicles is because of the change in volume. When matter changes forms, there is a change in volume as well. For instance, ice melts to form water. Ice needs compact space while the same amount of water needs more space in liquid form. This property of PCMs renders them useless for automobile applications. You might also like: Top Solid-State Battery Companies For EVs Learn Electric Cars Says In inference, due to the heat transfer capabilities of liquid cooling systems, these are much better than air cooling systems for EV battery cooling. Sure, there can be issues with the liquid cooling systems like leakage. But this system is designed in such a way that it doesn’t happen. In case it still transpires, it is ensured that the passengers remain safe. As far as corrosion is concerned, additives are added to the coolant to ensure great protection against any such issues.

Tips to Save and Earn Money from EV Charging

Top 5 Tips To Save / Earn Money From EV Charging

Modern practices allow electric car owners to not only charge their cars at a time when the electricity rates are cheaper but also to earn some money by lending the power back to the grid. The automotive world has reached a point where it is no longer a question of whether the EVs are the future or not, but where people are devising ways to save and even earn money from EV charging. EV adoption is at an all-time high and the signs look promising going forward. Almost all legacy carmakers have announced ambitious plans to ensure carbon neutrality in the coming years and eliminate internal combustion engines from their lineup. In addition, new players have emerged that are manufacturing electric vehicles exclusively. Consequently, the charging infrastructure is also being developed in tandem. Here are some ways to save or earn money by charging your EV in a particular way. You might also like: 5 New EV Battery Technologies – Aluminium-ion to Niobium Top 5 Ways to Save / Earn Money from EV Charging Complimentary EV Charging There are a lot of modern EV markers that are offering some free complimentary EV charging when you purchase a new electric car. Sure, there are not many models on which this offer is valid. Nonetheless, this is something that you need to keep an eye out for. The most prevalent EVs include Hyundai IONIQ 5 and VW ID.4. They offer 2 years and 3 years of complimentary DC charging (certain kWh per month) respectively. Charging During Off-Peak Hours Yet another common way to save a lot of money while charging your electric car is the time when you charge it. You must know that charging at home using an AC charger is anyway cheaper than charging at a DC power station. However, if you charge at home during non-peak hours, generally from 8 PM to 6 AM, you might be able to charge at an even lower price. So, plan your charging cycles accordingly. You might also like: Top Solid-State Battery Companies For EVs Solar Energy to Power Your Home / EV There are many parts of the world, where solar is gaining momentum. People are installing solar panels in their homes to power their entire household. Needless to mention, this is particularly beneficial in those parts that are mostly sunny. Hence, if you install solar panels at your home and charge the EV using that source, the charging costs are bound to be extremely low. Selling Power to the Grid Another increasing trend around which startups are evolving is selling the surplus power back to the grid. We have already discussed how you should ideally charge your EVs during off-peak hours. During these times, you are paying the least amount of money to buy power. However, when you are not using your EV, you could sell it back to the grid at a time when the electricity rates are much higher, i.e., during peak hours. In this way, a symbiotic association could take place where you are using the grid to get power and also selling power to the grid to generate some profit. EV Charger Tax Credit & EV-Specific Electricity Rates Now, these are slightly nuanced measures that might be limited to only a couple of countries at the moment. But we are sure that more governments around the world could adopt it. The US government offers up to $1,000 in tax credit if you wish to install a charging station at your home. That is a necessity for EV owners and you could save some bucks in the form of tax credit. Similarly, the UK-based OVO Energy is a company that gives specific discounts for users to charge their EVs. The prices are exclusively designed for electric car charging allowing you to save some money. You might also like: How to Maximize EV Driving Range – Tips & Strategies Learn Electric Cars Says Despite the exponential growth of the EV industry in the last couple of years, we are still at a nascent stage of this promising EV revolution. Hence, this is the right time to take advantage of the massive benefits and incentives being offered by the carmakers, the governments and charging players to promote mass adoption. We are certain that such measures will become more common in more nations as we go forward. This is a great window to switch from traditional ICE-powered cars to EVs. Also, we understand that these practices might not work in every country at the moment. But the aim of this blog post is to make you aware of the kinds of possibilities that exist. This would also prompt you to keep an eye out for any such new method you might come across that will help you save or earn money using your electric car.

How To Maximize EV Driving Range Tips

How to Maximize EV Driving Range – Tips & Strategies

Electric cars look to be the norm going forward which is why it makes sense to acquaint ourselves with their behaviours and idiosyncrasies. Arguably the most common question among future EV owners is how to maximize EV driving range. As more vehicles get electrified, this is a valid question. Extending the distance an EV can travel on a single charge is critical for mass adoption and to appease range anxiety. In this blog, we shall explore several tips and strategies to improve electric driving range. This would range from optimizing driving habits and maximizing battery efficiency to utilizing charging infrastructure effectively. You might also like: Wireless Charging For EVs Could Be Revolutionary Technology How to Maximize EV Range? Regenerative Braking Firstly, let us commence by discussing a built-in feature that most EVs inherently possess – Regenerative Braking. During acceleration, the electric motor takes power from the battery to power the wheels. However, during braking, the kinetic and heat energy can be used in the reverse direction to get stored back into the battery. When the driver lifts his/her foot off the gas pedal, this reverse circulation of energy can bring the car to a complete stop. This is called energy recuperation or regenerative braking. This is a great feature that could be used on downhill slopes to get some juice back into the battery. Reducing Energy Consumption in the Cabin You might know that it is nigh impossible to get the exact driving range that is claimed by the company as per the WLTP or any other standardized test cycle. This is because the range depends on various factors including driving mannerisms and the use of energy-sucking components like HVAC, heated and ventilated seats, auxiliary audio systems, etc. Now we understand that you can’t switch off the AC when it’s scorching hot, but in the case of an emergency, you must know that turning all these functions off can help maximize the range. You might also like: Are Stricter Emission Norms Right to Push Mass EV Adoption? Battery Management and Maintenance An eminent aspect of electric cars is their battery management system. In fact, carmakers are burning a lot of cash in the development of the BMS for EVs. This takes into account how well the cooling system is, how will the battery perform outside the ideal temperature range, how often does a battery need maintenance, etc. Regularly monitoring the battery’s state of charge (SoC) and avoiding extremely high or low levels can help prolong battery life. Sticking to manufacturer-recommended maintenance schedules, including software updates and battery health checks, helps maintain optimal performance. Using Charging Infrastructure Prudently You would think what role can the charging infrastructure play in maximizing range, right? Well, it is well-known that prolonged fast charging of any Li-ion battery can reduce its life. Sure, it doesn’t degrade the battery too much too rapidly. But if you are planning to own an EV for 8-10 years or even beyond that, making a conscious decision of using DC rapid charging minimally can make a lot of difference. For this, proper planning is needed. You must develop the habit of charging your EV at your home or work using an AC charger. Restrict the usage of DC rapid charging for long journeys on highways. Driving Mannerisms Finally, the most effective way to maximize the driving range of an EV depends on the way you drive it. Now, this is true even to sequester the maximum fuel economy from your ICE-powered vehicle and this law holds true even in the EV world. As opposed to ICE cars, EVs are more suited for city driving and not high-speed scenarios on highways. Higher energy gets consumed in the latter case. Traditional cars are more efficient on the highways but consume a lot of fuel in bumper-to-bumper traffic. To squeeze the maximum range though, simple habits like using the throttle and brake pedal gently and not flooring it is the way to go. You might also like: Here’s How Ferrari May Still Sell ICE Cars Post EU Ban of 2035 Learn Electric Cars Says These are some tips and strategies that one could incorporate in everyday life, as well as from a long-term perspective to ensure that the health of the battery is great and you are able to get the maximum range out of every charging cycle. We must also add that the R&D on batteries is still ongoing and ways to increase range and reduce charging times are surfacing every day. Hence, we might get more efficient batteries going forward.

5 New EV Battery Technologies

5 New EV Battery Technologies – Aluminium-ion to Niobium

New EV battery technologies are being developed vehemently all across the globe. The traditional and upcoming electric carmakers and traditional battery and tech companies are collaborating to develop future batteries as the electrification wave grips the mobility industry. The need for zero tailpipe pollution-emitting vehicles is a priority as the warnings from the scientific community about environmental degradation are unequivocal. As a result, R&D in battery technology has been underway for almost a decade now. Here are the top 5 relatively viable options that might make it into mass-production before the decade-end (some of these are already being tested in production vehicles starting this year (2023)). You might also like: Top Solid-State Battery Companies For EVs You might also like: Does the Future of EVs Rest on Sodium Ion Batteries? 5 New EV Battery Technologies Sodium-Ion Batteries We have already covered the details of the principle, advantages and disadvantages of Sodium-ion batteries previously. Just for recap, this battery type uses Sodium (instead of Lithium) to carry ions from the cathode to the anode and vice versa enabling the charge and discharge process. Sodium is the 6th most abundant element found in the earth’s crust, is non-inflammable, has a wider temperature range of operation, has low production cost, etc. These are the benefits over the existing Li-ion batteries. However, the issue is their low energy density and almost equal charge-discharge cycle counts compared to the Li-ion batteries. Also, mass production has only just commenced by CATL and BYD. You might also like: Are Chargers at DC Fast Charging Stations Bad For EVs? Solid State Batteries The next crucial and interesting EV technology is called a solid-state battery. As the name reflects, the electrolyte solution that is found between the cathode and anode of an electric car battery (or any other Li-ion battery used in other electronic gadgets) is in solid/gel form. In Li-ion batteries, this is in a liquid state which is what causes fire. But with solid-state technology, this electrolyte is in solid or gel form. Hence, the size and weight of the battery are reduced leading to increased range and faster charging times. However, more research is needed to produce these on a large scale. Lithium Sulfur Batteries Lithium Sulfur (Li-S) batteries use sulfur instead of complex, toxic, fast-diminishing and difficult-to-source elements like Cobalt or Nickel in their construction. This makes the batteries slightly lighter increasing their energy density which could be as high as around 500 Wh/kg compared to around 300 Wh/kg for regular Li-ion batteries. These can have around 1,500 charging cycles. However, the issues with these include polysulfide “shuttle” resulting in leakage of cathode material. You might also like: Tesla Battery (4680) vs BYD Blade Battery – Comparison Aluminium Ion Batteries Another interesting and potentially disruptive EV battery technology is the use of Al-ion. In this construction, Aluminium ions are used as charge carriers between the cathode and anode. Aluminium can exchange 3 electrons per ion which makes its energy density around 50 times higher than Li. Having 3 electrons has its advantages and disadvantages. The latter include relatively short shelf life and issues with heat, rate of charge, overall electrical behaviour and energy capacity. Niobium Batteries Finally, there are the exciting Niobium batteries that take 1 minute to recharge due to their layered molecular structure. Cambridge-based Nyobolt is working on this unique technology that uses Niobium anode reducing the charging time drastically. Even under severe temperatures, these batteries are less prone to catching fire. Their temperature gradient is just 8 degrees Celsius compared to around 27 degrees Celsius for regular batteries. While there has been significant development in the first two technologies with BYD and CATL having commenced the production of Sodium-ion batteries in mass-market EVs, the others still are in various stages of development and testing. It would be interesting to see which out of these (if any) dominates the space by the end of this decade. Also, chances are that these might co-exist or new technologies might also crop up.

Electric Cars Catching Fire

Why Electric Cars Catching Fire Must Concern You

While industry experts and new car buyers are beginning to jump on the EV bandwagon, we must also acquaint ourselves with the issue of electric cars catching fire. Now, before we go any further, we must mention that this is not an EV-bashing blog or creating fear among potential buyers, but a rather factual piece of content which talks about why EV fires are different and worse than fire in ICE-powered vehicles. Also, for the record, USA Today shows data highlighting that the number of EVs catching fire out of 100,000 vehicles is just 25 compared to gas cars (1,530). So, EVs are clearly much safer when it comes to fire explosions. Furthermore, most fires occur when vehicles get crashed which may necessarily not be due to any defect in the battery or construction. With that out of the way, let us discuss the chemistry of an EV fire. You might also like: Does the Future of EVs Rest on Sodium Ion Batteries? Chemistry of Electric Cars Catching Fire When a traditional gas-powered vehicle gets engulfed in flames, standard procedures like putting water into the fire to cut the oxygen supply works adequately. Additionally, fire extinguishers can control the situation and people are aware of what to do in such situations. However, that is the most terrifying aspect of EVs catching fire. We know that most EV batteries use Lithium-ion chemistry with Nickel, Cobalt, Manganese metals and liquid electrolytes. Generally, the battery is sealed off securely and it is meant to stay that way even during unfortunate cases. However, if the battery catches fire once, most standard procedures won’t be effective in dousing it out. The reason behind that is simple. The EV battery components become the fuel themselves causing a thermal runaway. This is due to the electrolyte decomposing and releasing Oxygen among other toxic gases including Carbon Monoxide, Hydrogen Cyanide, Hydrofluoric Acid and Cobalt. You might also like: Top Solid-State Battery Companies For EVs You don’t need to get in contact with these gases to get affected negatively. Some of these gases could get absorbed by your skin. That is the reason why people have lost their lives in such fires. There have also been cases reported where the fire kept on going for hours despite being tried to control it using conventional water and fire extinguishers. Hence, if such a fire breaks out in a parking lot where multiple EVs are parked, we could have a serious problem on our hands. Since most people charge their EVs at their homes, this issue becomes more pertinent. Overnight charging is the most common and practical way of charging EVs across the world. In fact, some people, due to a lack of space around the house, end up installing charging equipment inside the house. In countries like Australia, solar charging and storage devices are quite common. But these must be away from the house, at least outside the building so that even if there are such terrible situations, lives are not at stake. That is the reason why EV fires are extremely perilous and we must be informed about such things. As mentioned previously, the chances of EVs catching fire are still a lot lesser compared to traditional gas-powered vehicles. Nevertheless, proper safety measures and procedures must be in place as EVs get more popular than ever. The concerned authorities must come up with safety protocols about what must be done in such situations so that people are able to deal with these scenarios in the best possible way.

Top Solid-State Battery Companies For EVs

Top Solid-State Battery Companies For EVs

There are over 40 solid-state battery companies for EVs across the world at the moment. Some of these are owned or operated by the legacy carmakers themselves to stay ahead in the competition of the EV wave. These batteries have a cathode (+) and a solid-state ceramic separator in contact with the anode (-) which is formed after ion transfer. As the battery charges, the Lithium ions travel through the ceramic separator and deposit on the contact surface on the other side making an anode of pure metallic Lithium. You might also like: Does the Future of EVs Rest on Sodium Ion Batteries? This Lithium metal anode allows the energy to be stored in the battery in a smaller area increasing the energy density. Hence, the overall weight of this configuration is lower than the regular Lithium-ion batteries, the energy density is higher leading to an increased range, charging times are shorter and the system is non-inflammable. This construction, essentially, addresses all the shortcomings typical of Li-ion batteries. However, mass production has not commenced yet. Here are the top 5 companies that are developing this technology. You might also like: Are Chargers at DC Fast Charging Stations Bad For EVs? Top Solid-State Battery Companies For EVs Volkswagen & Bill Gates – QuantumScape QuantumScape is an American company that makes solid-state batteries for EVs and is based in San Jose, California. It was established in 2010 and employs around 400 people. However, the most important aspect of this company is the fact that it is backed by Volkswagen and Bill Gates. Its main features include a 650 km range, 380-500 Wh/kg energy density (regular Li-ion batteries have somewhere around 250 Wh/kg) and a charge time of around 15 mins. BMW & Ford – Solid Power Solid Power is a solid-state battery manufacturer that is partners with BMW and Ford. It specializes in sulfide-based solid ion-conducting chemistry (replacing liquid electrolytes in regular Li-ion batteries) and also swapping the graphite anode with a Lithium metal anode. It is producing 2 Ah cells with 320 Wh/kg energy density. You might also like: Tesla Battery (4680) vs BYD Blade Battery – Comparison Toyota and Panasonic – Prime Planet Energy & Solutions Inc. The Japanese auto-giant in amidst developing its own solid-state batteries to power future EVs. It partnered with Panasonic to form Prime Planet Energy & Solutions Inc. It is planning to produce solid-state batteries in limited numbers by 2025. The batteries will have a range of 700 km and will have a charging time from 0-100% of 10-15 mins. Hyundai – Factorial Energy With extensive research and investment in solid-state batteries over the past 6 years, Factorial Energy is a Hyundai-backed company. At the 2023 Consumers Electronics Show (CES) in Las Vegas, Factorial showcased its 100 Ah prototype cells. These will offer 30% higher energy density than the traditional Li-ion batteries. With such giants of the automotive industry backing this technology, it sure looks like a matter of time before mass production of these solid-state batteries for EVs starts offering greater and safer alternatives to the existing Li-ion batteries. Apart from that, alternative battery technologies like Sodium-ion will also witness some more R&D. Within a brief span of a few years, consumers might have a wide choice while considering electric cars in terms of price, range and safety.

Sodium Ion Battery - Representational Image

Does the Future of EVs Rest on Sodium Ion Batteries?

Sodium Ion batteries are emerging as a viable solution for EVs but there are pros and cons to them. Currently, almost all EV batteries are constructed using Lithium Ion chemistry. In addition to that, the other elements used in Li-ion configuration include Nickel, Copper, Manganese, Cobalt, etc. Now, all these (including Lithium) are limited resources found in a handful of areas around the globe. Not only that, there are environmental challenges associated with the mining of most of these elements. For instance, the Democratic Republic of the Congo sits on the largest Cobalt reserves in the world. There are numerous and frequent cases of child labour being used to extract Cobalt which raises human rights concerns in addition to the limited amount of such rare elements. Also, Lithium is primarily used in consumer electronics like smartphones, tablets, laptops, etc. Hence, the automobile industry will always be the second recipient of it. You might also like: Are Chargers at DC Fast Charging Stations Bad For EVs? Sodium Ion Batteries for EVs That is where Sodium comes into the picture. Sodium is the 6th most abundant element in earth’s crust. More importantly, it sits right next to Lithium on the periodic table which lends almost similar properties compared to Lithium. Being abundantly available means that the cost of the element is significantly lower than Lithium. At present, the cost of EVs is what is the biggest hurdle in mass adoption apart from the charging infrastructure. Advantages of Sodium Ion Batteries in EVs Disadvantages You might also like: Tesla Battery (4680) vs BYD Blade Battery – Comparison Could Sodium-Ion Batteries Replace Lithium-Ion in EVs? Well, it is that classic case of yes and no. Better put, there is a chance that both could co-exist depending on the use case and market. Markets, where cost is the driving factor for EV sales, could go for Sodium-Ion batteries. In fact, China has already started experimenting with these in their EVs that are on sale like Hina Battery in Sehol E10X compact EV. BYD and CATL are about to join the fray soon. For other markets and carmakers where affordability is not the issue and performance takes the front seat, Lithium-Ion batteries will continue. With the amount of R&D going into battery development in various parts of the world, there might be better alternatives or favourable modifications to Lithium-Ion batteries too.

EV Tax Credit Laws USA

Here’s Why You Won’t Get Full EV Tax Credit in 2023 in the USA

The updated EV tax credit scheme has made the entire process rather complex. Earlier, if the company of the EV or PHEV (Plug-In Hybrid Vehicle) that you purchased had sold less than 200,000 EVs or PHEVs, you would have received the full $7,500 tax credit on the qualifying EVs. But now, there are many layers including income caps, price caps on eligible EVs, location of manufacturing of EV (US or outside) and source of battery components (US or outside). You won’t get the full amount if all of these criteria are not fulfilled. You might also like: Top 5 Mini EVs in 2023 – Future of Urban Mobility? Additionally, the amount of tax credit that you are eligible to get until the end of 2023 can be availed of at the time of filing the ITR (Income Tax Returns). But starting 2024, you will be able to apply the amount directly at the time of purchasing the EV, reducing the initial cost straightaway. This will allow car buyers to take lower credit through financial institutions, a great pull for a lot of new EV buyers. Under this act, the term used to describe EVs is “Clean Vehicles”. This means that EVs, PHEVs as well as Hydrogen cars will be eligible for the tax rebate/credit. This act will continue until 2032. You might also like: Electrify America Leads Non-Tesla DC Fast Charging Network with 800 Stations EV Tax Credit Depends on Many Factors You might also like: Factors on Which Energy Consumption of an EV Depends In conclusion, this new regulation will even allow the EV to re-attain the eligibility for the tax rebate who has previously lost it on account of the aforementioned rule where a 200,000 vehicle limit for a carmaker was applied. These companies were Tesla, GM and Toyota. Going forward, EVs from these three auto giants will also become eligible for the tax benefit yet again.

Electric Car Batteries Swapped or Replaced

Can Electric Car Batteries Be Replaced or Swapped?

With the EV trend becoming a reality, it becomes critical to know the basics of maintenance related to your electric cars. Is it possible for the electric car batteries to be replaced or swapped? Since the adoption rate of electric cars is still minuscule compared to their internal combustion engine-powered counterparts, there are myriad queries related to them. The batteries, charging characteristics, and range anxiety continue to pose hurdles in the mass adoption of EVs. While the benefits of shifting to EVs might be quite understandable and logical, the actual implementation is enveloped in quandary and uncertainty. The aim of this article is to dispel some myths surrounding electric car batteries.  You might also like: Tesla Battery (4680) vs BYD Blade Battery – Comparison Can The Electric Car Batteries Be Swapped or Replaced? Let us try to understand this by using a familiar analogy. In the case of traditional vehicles, the engines and their components are fixed, while the fuel is needed to be filled regularly. Similarly, the electric motors on the electric cars are fixed, but the batteries that feed power to those motors could be removed or swapped, if need be, Generally, the batteries are placed underneath the floor of the vehicle and charged on a regular basis just like your smartphones, tablets or laptops.  However, with the limited charging infrastructure available in most countries and high charging times associated with EVs, people always have this range anxiety about what would happen if their EVs run out of charge on a highway. But there is a solution that might not be widespread in the personal mobility space. In the commercial electric vehicle fleet across various markets, there is the practice of swapping the batteries of the car.  You might also like: Is Electric Car Battery Safe, Fireproof, Waterproof and Short Circuit Proof? How Is It Achieved? The delivery companies, for instance, have huge warehouses where the entire fleet of their delivery vehicles is parked. There is sufficient charging infrastructure there too where the vehicles could even be charged using the regular AC chargers overnight. There is a provision for removing batteries from electric vehicles, especially commercial vans. The battery that has been charged overnight is used in the morning. It could suffice the entire day while the other battery is being charged in the meanwhile.  You might also like: What Is Vehicle To Load (V2L) & Which EVs Have This Feature? If there is an issue with the battery that is being operated or it runs out of juice, one could simply visit the warehouse and swap the discharged battery for a recharged one in a matter of minutes. The battery packs are compact and could be easily placed in their designated slot in the EV. The battery that is taken out could directly be taken to the charging station and the refuelling time (essentially) be reduced to the time taken to replace the two batteries.  This would ensure that the operations are not halted because of charging times and productivity will enhance due to the element of predictability that is achieved by this method. Slowly and steadily, with the prices of batteries coming down in the future, this solution could be utilised for personal use too. This technique is being practised even today by big companies that use electric vehicles for commercial purposes. 

EV Battery Fireproof

Is Electric Car Battery Safe, Fireproof, Waterproof and Short Circuit Proof?

The electric car battery is the most crucial component of any EV and hence, its safe, fireproof, waterproof and short circuit proof nature needs to be ascertained.  How safe, fireproof, waterproof and short circuit proof is the battery of your electric car? Well, it is a pressing issue that a ton of potential electric car buyers struggle with. And it is a valid concern too. With the immediate future of mobility belonging to electric cars alone, one must be aware of the strength and behaviour of batteries to establish a smooth ownership experience of an electric car.  Is Your Electric Car Battery Safe, Fireproof, Waterproof and Short Circuit Proof? While the battery technology in automobiles may be new, the R&D by the giant automakers regarding every single aspect of a vehicle is not. Hence, they have taken into consideration all the aspects of battery usage. This includes rigorous and thorough testing under all weather conditions, across various terrains, in different driving and traffic conditions, in battery charging scenarios, etc.  While designing the battery, the strength is taken into account. The placement of the battery is also done in such a way that during unfortunate incidents, it doesn’t get destroyed hurting the passengers. There is an imminent danger of a short circuit since a battery is nothing but a group of cells placed together. But there are fireproof materials placed between the cells to prevent that from happening. Also, the battery pack is concealed in a fireproof and waterproof cover/module.  On the outside where the charging socket of a car is located, the charging doesn’t begin until a few internal tests have been done to ensure that no water, moisture or dirt is detected in the socket or the charger. Once it is established that everything is in order, the charging of a car commences. Such basic procedure has been followed extensively by all carmakers.   Nail Penetration Test The nail penetration test is done to stimulate an internal short circuit in the battery of an electric vehicle. It measures the temperature rise within the battery when a nail is penetrated through the battery surface, simulating damage in the event of deformation due to a crash. Batteries that pass that test prove that even in case of emergencies, the battery will not explode. Just like the safety ratings of a regular car, this test is the benchmark to rate the safety of the battery pack of an EV. With time, more such tests will become standardised to ensure homologation and road legality.  With the constant advancement and research in battery technology, things are only bound to improve further. As a matter of fact, there are plenty of new materials, techniques, and processes that would come up as every automaker shifts toward electrification. Then we would witness even more modern solutions to battery-related issues.  So, to answer the question, the batteries in EVs ARE waterproof, fireproof, short circuit proof and safe.